Chondroitin publications

Your CostelloKids online research library

Chondroitin publications

Myocardial Storage of Chondroitin Sulfate-Containing Moieties in Costello Syndrome Patients With Severe Hypertrophic Cardiomyopathy

Aleksander Hinek, Michael A. Teitell,  Lisa Schoyer,  William Allen,  Karen W. Gripp,  Robert Hamilton,  Rosanna Weksberg, Michael Kluppel, and Angela E. Lin

Costello syndrome is a distinctive multiple congenital anomaly syndrome, characterized by loose soft skin with deep palmar and plantar creases, loose joints, distinctive coarse facial features, skeletal abnormalities, cardiac abnormalities (cardiovascular malformation (CVM), hypertrophic cardiomyopathy, tachycardia), predisposition to malignancy, developmental delays, andmentalretardation.Previousstudieswithcultured fibroblasts from individuals with Costello syndrome demonstrate excessive accumulation of chondroitin sulfate-bearing proteoglycans, associated with both impaired formation of elastic fibers and an unusually high rate of cellular proliferation. Despite multiple clinical reports of cardiac abnormalities, there has been only one previously published report describing post-mortem findings in hearts from Costello syndrome patients. Here we provide a detailed description of the post-mortem findings of the hearts of three children with Costello syndrome. Routine histological examination and results of targeted histochemical and immunohistochemical studies revealed that in addition to cardiomyocyte hypertrophy, these hearts also demonstrated massive pericellular and intracellular accumulation of chondroitin sulfate-bearing proteoglycans and a marked reduction of elastic fibers. Normal stroma was replaced by multifocal collagenous fibrosis. Most peculiar was the finding that the bulk of the chondroitin sulfate accumulated in these Costello syndrome hearts is a chondroitin-6-sulfate. In contrast, deposition of chondroitin-4 sulfate was below the level detected in normal hearts. We propose that an imbalance in sulfation of chondroitin sulfate molecules and subsequent accumulation of chondroitin-6-sulfate in cardiomyocytes contribute to the development of the hypertrophic cardiomyopathy of Costello syndrome


Download Report

C4ST-1/CHST11-controlled chondroitin sulfation
interferes with oncogenic HRAS signaling in
Costello syndrome

Michael Kluppel Payman Samavarchi-Tehrani3, Kela Liu, Jeffrey L Wrana and Aleksander Hinek

Costello syndrome is a pediatric genetic disorder linked to oncogenic germline mutations in the HRAS gene. The disease is characterized by multiple developmental abnormalities, as well as predisposition to malignancies. Our recent observation that heart tissue from patients with Costello syndrome showed a loss of the glycosaminoglycan chondroitin-4-sulfate (C4S)  inspired  our present study aimed to explore a functional involvement of the chondroitin sulfate (CS) biosynthesis gene Carbohydrate sulfotransferase 11/Chondroitin-4-sulfotransferase-1 (CHST11/C4ST-1), as well as an impaired chondroitin sulfation balance, as a downstream mediator of oncogenic HRAS in Costello syndrome. Here we demonstrate a loss of C4S, as well as a reduction in C4ST-1 mRNA and protein expression, in primary fibroblasts from Costello syndrome patients. We go on to show that expression of oncogenic HRAS in normal fibroblasts can repress C4ST-1 expression, whereas interference with oncogenic HRAS signaling in Costello syndrome fibroblasts elevated C4ST-1 expression, thus identifying C4ST-1 as a negatively regulated target gene of HRAS signaling. Importantly, we show that forced expression of C4ST-1 in Costello fibroblasts could rescue the proliferation and elastogenesis defects associated with oncogenic HRAS signaling in these cells. Our results indicate reduced C4ST-1 expression and chondroitin sulfation imbalance mediating the effects of oncogenic HRAS signaling in the pathogenesis of Costello syndrome. Thus, our work identifies C4ST-1-dependent chondroitin sulfation as a downstream vulnerability in oncogenic RAS signaling, which might be pharmacologically exploited in future treatments.


Download Report